Graphene band structure and its2DRaman mode
نویسندگان
چکیده
منابع مشابه
Field modulation in bilayer graphene band structure.
Using an external electric field, one can modulate the band gap of Bernal stacked bilayer graphene by breaking the A-[Formula: see text] symmetry. We analyze strain effects on the bilayer graphene using the extended Hückel theory and find that reduced interlayer distance results in higher band gap modulation, as expected. Furthermore, above about 2.5 Å interlayer distance, the band gap is direc...
متن کاملLecture 5 : Graphene : Electronic band structure and Dirac fermions
A suspended sheet of pure graphene – a plane layer of C atoms bonded together in a honeycomb lattice – is the “most two-dimensional” system imaginable. Such sheets have long been known to exist in disguised forms – in graphite (many graphene sheets stacked on top of one another), C nanotubes (a graphene sheet rolled into a cylinder) and fullerenes (buckyballs), which are small areas of a graphe...
متن کاملBand structure and many body effects in graphene
We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene π bands to a oneand three-near-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the interaction between holes and collective excitations, namely plasmons, phonons, and electron-h...
متن کاملBand structure and gaps of triangular graphene superlattices.
The general properties of long wavelength triangular graphene superlattices are studied. It is shown that Dirac points with and without gaps can arise at a number of high-symmetry points of the Brillouin zone. The existence of gaps can lead to insulating behaviour at commensurate fillings. Strain and magnetic superlattices are also discussed.
متن کاملStrained bilayer graphene: Band structure topology and Landau level spectrum
We show that topology of the low-energy band structure in bilayer graphene critically depends on mechanical deformations of the crystal which may easily develop in suspended graphene flakes. We describe the Lifshitz transition that takes place in strained bilayers upon splitting the parabolic bands at intermediate energies into several Dirac cones at the energy scale of a few meV. Then, we show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2014
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.90.085407